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Abstract
We develop a language-guided navigation task
set in a continuous 3D environment where agents
must execute low-level actions to follow natu-
ral language navigation directions. By being sit-
uated in continuous environments, this setting
lifts a number of assumptions implicit in prior
work that represents environments as a sparse
graph of panoramas with edges corresponding
to navigability. Specifically, our setting drops the
presumptions of known environment topologies,
short-range oracle navigation, and perfect agent
localization. To contextualize this new task, we
develop models that mirror many of the advances
made in prior settings. We find significantly lower
performance in the continuous setting – suggest-
ing that performance in topological settings may
be inflated by the strong implicit assumptions.

1. Introduction
Springing forth from the pages of science fiction and cap-
turing the daydreams of weary chore-doers everywhere, the
promise and potential of general-purpose robotic assistants
that follow natural language instructions has been long un-
derstood. Taking a small step towards this goal, recent work
has begun developing artificial agents that follow natural
language navigation instructions in perceptually-rich, sim-
ulated environments (Anderson et al., 2018; Chen et al.,
2019). An example instruction might be “Go down the hall
and turn left at the wooden desk. Continue until you reach
the kitchen and then stop by the kettle.” and agents are
evaluated by their ability to follow the described path in
(potentially novel) simulated environments.

Many of these tasks have been developed from datasets of
panoramic images captured in real scenes – e.g. Google
StreetView images in Touchdown (Chen et al., 2019) or
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Matterport3D panoramas captured in homes in Vision-and-
Language Navigation (VLN) (Anderson et al., 2018). This
paradigm enables efficient data collection and high visual
fidelity compared to 3D scanning or creating synthetic envi-
ronments; however, scenes are only observed from a sparse
set of points relative to the full 3D environment (∼117
viewpoints per environment in VLN). As a consequence,
environments in these tasks are defined in terms of a naviga-
tion graph (nav-graph) – a static topological representation
of 3D space. As shown in Fig. 1(a), nodes in the nav-graph
correspond to 360° panoramic images taken at fixed loca-
tions and edges between nodes indicate navigability. This
nav-graph based formulation introduces a number of as-
sumptions that make it a poor proxy for what a robotic agent
would encounter while navigating the real world.

Focusing our discussion on Vision-and-Language Naviga-
tion (VLN), the existence and common usage of the nav-
graph imply the following assumptions:

– Known topology. Rather than continuous environments
in which agents can move freely, agents operate on a fixed
topology of traversable nodes (shown in blue in Fig. 1(a)).
Aside from being a poor match to robot control, this also
provides prior information about environment layout to
agents – even in “unseen” test settings. How an actual
agent might acquire and update such a topology in new
environments is an open question.

– Oracle navigation. Movement between adjacent nodes
in the nav-graph is deterministic, implying the existence
of an oracle navigator capable of accurately traversing
multiple meters in the presence of obstacles – abstracting
away the problem of visual navigation. This is in contrast
to the continuous stream of observations a real agent
would encounter while moving.

– Perfect localization. Agents are given their precise loca-
tion and heading at all times. Most works use this data
to encode precise geometry between nodes in the nav-
graph as part of the decision making process, e.g. moving
30°W and 1.12m forward. However, precise localization
indoors is still a challenging problem.

These assumptions are often justified by invoking existing
technologies as potential oracles. For example, simultane-
ous localization and mapping (SLAM) or odometry systems
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(a) Vision-and-Language Navigation (VLN) (b) VLN in Continuous Environments (VLN-CE)

Figure 1. The VLN setting (a) operates on a fixed topology of panoramic images (shown in blue) – assuming perfect navigation between
nodes (often meters apart) and precise localization. Our VLN-CE setting (b) lifts these assumptions by instantiating the task in continuous
environments with low-level actions – providing a more realistic testbed for robot instruction following.

can offer strong localization in appropriate conditions. Like-
wise, algorithms for path planning and control can navigate
short distances in the presence of obstacles. Further, it is
reasonable to suggest that issuing commands at the level
of relative waypoints (in analogy to nav-graph nodes) is
the proper interface between language-guided AI navigators
and lower-level agent control. However, these techniques
are each independently far from perfect and such an agent
would need to learn the limitations of these lower-level
control systems – facing consequences when proposed way-
points cannot be reached effectively. Integrative studies
such as these that combine and evaluate techniques for con-
trol and mapping with learned AI agents are not possible
in current nav-graph based problem settings. In this work,
we develop a continuous setting that enables these types of
studies and take a first step towards integrating VLN agents
with control via low-level actions.

We develop Vision-and-Language Navigation in Continuous
Environments (VLN-CE). In VLN-CE, agents are free to
navigate to any unobstructed point through a set of low-
level actions (e.g. move forward 0.25m, turn-left 15
degrees) rather than teleporting between fixed nodes. This
setting introduces many challenges ignored in prior work.
Agents in VLN-CE face significantly longer time horizons;
the average number of actions along a path in VLN-CE is
∼55 compared to the 4-6 node hops in VLN. Moreover, the
views the agent receives along the way are not well-posed
by careful human operators as in the panoramas, but rather
a consequence of the agent’s actions. Further, agents are not
provided their location or heading.

We develop two agent architectures for this task and perform
input-modality ablations to assess the biases and baselines
in this new setting. Unlike in VLN where depth is rarely
used, our analysis reveals depth to be an integral signal for
learning embodied navigation. Our best agent successfully
navigates to the goal in approximately a third of episodes in
unseen environments – taking an average of 88 actions.

VLN-CE is set in the space of language-guided visual navi-
gation where a number of recent tasks have been proposed
(Anderson et al., 2018; Chen et al., 2019; Misra et al., 2018;
Hermann et al., 2020). The variation in these tasks is primar-

ily in the source of navigation instructions (crowdsourced
vs. generated via template), environment realism (hand-
designed synthetic worlds vs. captures from real locations),
and constraints on agent navigation (nav-graph based navi-
gation vs. unconstrained agent motion).

Task Instructions Environment Navigation

LANI (Misra et al., 2018) Crowdsourced Synthetic Unconstrained
StreetNav (Hermann et al., 2020) Templated Real Nav-Graph Based
Touchdown (Chen et al., 2019) Crowdsourced Real Nav-Graph Based
VLN (Anderson et al., 2018) Crowdsourced Real Nav-Graph Based

VLN-CE (ours) Crowdsourced Real Unconstrained

Our proposed VLN-CE task provides the first setting with
crowdsourced instructions in realistic environments with
unconstrained agent navigation.

2. VLN in Continuous Environments
We consider a continuous setting for the VLN task which we
refer to as Vision-and-Language Navigation in Continuous
Environments (VLN-CE). Given a natural language naviga-
tion instruction, an agent must navigate from a start position
to the described goal in a continuous 3D environment by ex-
ecuting a sequence of low-level actions based on egocentric
perception alone. In overview, we develop this setting by
transferring nav-graph-based Room-to-Room (R2R) (An-
derson et al., 2018) trajectories to reconstructed continuous
Matterport3D environments in the Habitat simulator (Savva
et al., 2019).

Continuous Matterport3D Environments in Habitat.
We set our task in the Matterport3D (MP3D) (Chang et al.,
2017) dataset, a collection of 90 environments. To enable
agent interaction with the 3D mesh reconstructions, we de-
velop the VLN-CE task on top of the Habitat Simulator
(Savva et al., 2019). In contrast to the simulator used in
VLN (Anderson et al., 2018), Habitat allows agents to navi-
gate freely in the continuous environments.

Observations and Actions. We select observation and
action spaces to emulate a ground-based, zero-turning ra-
dius robot with a single, forward-mounted RGBD camera.
Agents perceive the world through egocentric RGBD im-
ages with a resolution of 256×256 and a horizontal field-of-
view of 90 degrees. We consider four low-level actions for
agents in VLN-CE – move forward 0.25m, turn-left
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(a) Sequence-to-Sequence Baseline
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(b) Cross-Modal Attention Model

Figure 2. We develop a simple baseline agent (a) as well as an attention-based agent (b) that reflect trends in VLN modeling.

Figure 3. We transfer nav-graph trajectories over panoramas (blue
dots) from the Room-to-Room (R2R) dataset to reconstructed
Matterport3D (MP3D) environments, adjusting for mesh errors.

or turn-right 15 degrees, or stop to declare that the
goal position has been reached. These actions can easily be
implemented on robots with standard motion controllers.

2.1. Transferring Nav-Graph Trajectories
Rather than collecting a new dataset, we instead transfer
instruction and trajectories from the nav-graph-based Room-
to-Room dataset. Doing so enables us to compare existing
nav-graph-based techniques with our methods that operate
in continuous environments on the same instructions.

MP3D Simulator and the Room-to-Room Dataset. An-
derson et al. (2018) developed the Matterport3D Simu-
lator to enable agent interaction with MP3D panoramas.
Environments in this simulator are defined as nav-graphs
E = {V, E}. Each node v ∈ V corresponds to a panoramic
image I at location x, y, z – i.e. v = {I, x, y, z}. Edges in
the graph indicate oracle navigability. Anderson et al. then
collect the Room-to-Room (R2R) dataset containing 7189
trajectories each with three human-generated instructions.

Converting Room-to-Room Trajectories to Habitat.
Given a mapping between the coordinate frames of Mat-
terport3D Simulator and MP3D in Habitat, it is seemingly
simple to transfer the Room-to-Room trajectories – after all,
each node has a corresponding xyz location. However, node
locations often do not correspond to reachable locations for
a ground-based agent – existing at variable height depending
on tripod configuration or placed on top of flat furniture like
tables. Fig. 3 shows an overview of our conversion process.

For each node, v = {I, x, y, z}, we identify the closest point
on the reconstructed mesh that can be occupied by a ground-
based agent. Directly projecting to the nearest mesh location
fails for 73% of nodes, either projecting to distant (>0.5m)

or non-navigable points. Instead, we perform a vertical ray
trace with a limited horizontal displacement. If no navigable
point is found, we consider the MP3D node invalid. We
reviewed invalid nodes manually and made corrections if
possible. After these steps, 98.3% of nodes are successfully
transferred which we refer to as waypoints. Finally, we
verify that an oracle agent can navigate each trajectory of
waypoints τ = [w1, . . . , wT ]. In total, we find 77% of the
R2R trajectories navigable in the continuous environment.
The 23% that were not navigable either included an invalid
node or spanned disjoint regions of the reconstruction.

2.2. VLN-CE Dataset
The VLN-CE dataset consists of 4475 trajectories converted
from R2R train and validation splits. Each trajectory has the
multiple instructions from R2R and a pre-computed shortest
path following the waypoints via low-level actions.

3. Instruction-guided Nav Models in VLN-CE
We develop two models for VLN-CE. A simple sequence-
to-sequence baseline and a more powerful cross-modal at-
tention model which are conceptually similar to early and
more recent work in the nav-graph based VLN task.

Encoding Inputs. We convert tokenized instructions to
word embeddings w1, . . . ,wT for a length T instruction
which are then processed by recurrent encoders. We apply a
pretrained ResNet50 to RGB observations to collect seman-
tic visual features. Likewise for depth observations, we use
a ResNet50 trained in point-goal navigation.

3.1. Sequence-to-Sequence Baseline
We consider a simple sequence-to-sequence baseline model
shown in Fig. 2(a) consisting of a recurrent policy that takes
visual observations (depth and RGB) and an instruction
embedding at each time step, then predicts an action a.
This simple model enables straight-forward input-modality
ablations and establishes a baseline for the VLN-CE setting.

3.2. Cross-Modal Attention Model
We consider a more expressive model shown in Fig. 2(b) that
incorporates mechanisms for cross-modal attention and spa-
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Table 1. Performance in VLN-CE. We find that the Cross-Modal model outperforms all other models.
Val-Seen Val-Unseen

# Model Vision Instr. History TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑

1 Hand-Crafted - - - 3.83 9.56 0.33 0.05 0.04 0.04 3.71 10.34 0.30 0.04 0.03 0.02

2 Seq2Seq-Base RGBD X X 8.40 8.54 0.45 0.35 0.25 0.24 7.67 8.94 0.43 0.25 0.20 0.18
3 – No Image D X X 7.77 8.55 0.46 0.31 0.24 0.23 7.87 9.09 0.41 0.23 0.17 0.15
4 – No Depth RGB X X 4.93 10.76 0.29 0.10 0.03 0.03 5.54 9.89 0.31 0.11 0.04 0.04
5 – No Vision - X X 4.26 11.07 0.26 0.03 0.00 0.00 4.68 10.06 0.30 0.07 0.00 0.00
6 – No Instruction RGBD - X 7.86 9.09 0.42 0.26 0.18 0.17 7.27 9.03 0.42 0.22 0.17 0.16

7 Seq2Seq RGBD X X 9.32 7.09 0.53 0.44 0.34 0.32 8.46 7.92 0.48 0.35 0.26 0.23
8 Cross-Modal RGBD X X 9.26 7.12 0.54 0.46 0.37 0.35 8.64 7.37 0.51 0.40 0.32 0.30

tial visual reasoning. This model consists of two recurrent
networks – one tracking visual observations as before and
the other tracking attended instruction and visual features.

4. Experiments
Setting and Metrics. We train and evaluate our models in
VLN-CE. We report standard metrics for visual navigation
tasks defined in (Anderson et al., 2018; Magalhaes et al.,
2019) – trajectory length in meters (TL), terminal navigation
error in meters (NE), oracle success rate (OS), success rate
(SR), success weighted by inverse path length (SPL), and
normalized dynamic-time warping (nDTW). For our discus-
sion, we examine SR and SPL as the primary metrics.

4.1. Establishing Baseline Performance for VLN-CE
Non-Learning Baseline. Shown in Tab. 1 (row 1), we eval-
uate a hand-crafted agent that picks a random heading
and takes 37 forward actions (average trajectory length)
before calling stop. It achieves a 3% success rate in val-
unseen. In contrast, a similar hand-crafted random-heading-
and-forward model in VLN yields a 16.3% success rate
(Anderson et al., 2018). This gap illustrates the strong struc-
tural prior provided by the nav-graph in VLN.

Seq2Seq and Single-Modality Ablations. Tab. 1 also
shows performance for the baseline Seq2Seq model along
with single-modality ablations as trained with imitation
learning (rows 2-6). Seq2Seq-Base outperforms the
hand-crafted baseline and all modality ablations with a 20%
val-unseen success rate. We find that depth is a very strong
signal for learning, with models lacking it (No Depth and
No Vision) failing to outperform chance. We believe
that depth enables agents to quickly begin traversing envi-
ronments effectively (e.g. without collisions) and without
this it is very difficult to bootstrap to instruction following.

4.2. Model Performance in VLN-CE
We then use an enhanced training regime for both Seq2Seq
and Cross-Modalmodels. First, we find DAgger training
increases Seq2Seq performance from 0.18 SPL to 0.23
SPL (rows 2 vs. 7). Next, we find that while not effective for
the Seq2Seq model, data-augmentation (Tan et al., 2019)

and progress monitor (Ma et al., 2019) loss (in addition to
DAgger) improve the Cross-Modal model. With these
enhancements the Cross-Modal model performed the
best in unseen environments at 0.30 SPL (a 30% relative
improvement over Seq2Seq, rows 7 and 8).
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