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Abstract
Following a navigation instruction such as ‘Walk
down the stairs and stop near the sofa’ requires
an agent to ground scene elements referenced via
language (e.g.‘stairs’) to visual content in the en-
vironment (pixels corresponding to ‘stairs’).

We ask the following question – can we lever-
age abundant ‘disembodied’ web-scraped vision-
and-language corpora (e.g. Conceptual Captions
(Sharma et al., 2018)) to learn visual groundings
(what do ‘stairs’ look like?) that improve per-
formance on a relatively data-starved embodied
perception task (Vision-and-Language Naviga-
tion)? Specifically, we develop VLN-BERT, a
visiolinguistic transformer model that scores the
compatibility between an instruction (‘...stop near
the sofa’) and a sequence of panoramic images.
We demonstrate that pretraining VLN-BERT on
image-text pairs from the web significantly im-
proves performance on VLN – outperforming the
prior state-of-the-art in the fully-observed setting
by 4 absolute percentage points on success rate.
Ablations of our pretraining curriculum show each
stage to be impactful – with their combination re-
sulting in further synergistic effects.

1. Introduction
Consider the navigation instruction in Figure 1 (right), ‘Walk
straight and pass the couches then pass the white table with
the four chairs and stop by the brick wall.’ In vision-and-
language navigation (VLN) (Anderson et al., 2018), agents
must interpret such instructions to navigate through photo-
realistic environments. In this instance, the agent needs to
select a path that passes ‘the couches’, ‘the white table’, ‘the
four chairs’, and ends at ‘the brick wall’. As such, the ability
to ground references to these objects and scene elements is
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Figure 1. We propose a model architecture and training curriculum
specifically designed to transfer visual grounding learned from
image-text pairs from the web (left) to the embodied AI task of
vision-and-language navigation (VLN) (right).

central to success. Existing work has focused on learning
this grounding solely from a task-specific training dataset
of path-instruction pairs (Fried et al., 2018; Ke et al., 2019;
Ma et al., 2019; Tan et al., 2019; Wang et al., 2019) – which
are expensive, laborious, and time-consuming to collect at
scale and thus tend to be relatively small – e.g. the Room-
to-Room dataset (Anderson et al., 2018) contains around
14k path-instruction pairs for training. As an alternative, we
propose learning visual grounding from webly-supervised
internet data, such as the images and captions captured
in the Conceptual Captions dataset (Sharma et al., 2018),
containing around 3.3M image-text pairs.

Conceptually, transfer learning from large-scale web data to
embodied AI tasks such as VLN is an attractive alternative
to collecting more data. Empirically, however, the effec-
tiveness of this strategy remains open to question – would
such a transfer even work? Unlike web images, which are
highly-curated and stick closely to aesthetic biases, embod-
ied data contains content and viewpoints that are not widely
published online. For example, as shown in Figure 2, an
embodied agent may perceive doors via a close-up view of
a door frame rather than as a carefully composed image of a
(typically closed) door. In VLN, image framing is a result
of the agent’s position rather than choices made by a pho-
tographer. Consequently, we investigate the question – to
what degree can webly-supervised visual grounding learned
on static images be transferred to the embodied VLN task?
Put more succinctly, can ‘disembodied’ web data be used to
improve visual grounding for embodied agents?

To answer this question, we introduce VLN-BERT, a visi-
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Figure 2. Images from Conceptual Captions (CC) (Sharma et al., 2018) (top) and Matterport3D (MP3D) (Chang et al., 2017) (bottom)
illustrate the differences between the two domains such as viewpoint and lighting.

olinguistic transformer-based model for scoring the align-
ment between an instruction and an agent’s observations
along a path. We structure VLN-BERT to enable straight-
forward transfer learning from a model from prior work
on general visiolinguistic representation learning (Lu et al.,
2019), and explore a training curriculum that incorporates
both large-scale internet data and embodied path-instruction
pairs. VLN-BERT is sequentially trained using 1) language-
only data (Wikipedia and BooksCorpus (Zhu et al., 2015) as
in BERT (Devlin et al., 2018)), 2) web image-text pairs
(Conceptual Captions (Sharma et al., 2018) as in ViL-
BERT (Lu et al., 2019)), and 3) path-instruction pairs from
the Room-to-Room dataset (Anderson et al., 2018). Fol-
lowing this protocol the model learns to represent language,
then to ground visual concepts, and finally to ground visual
concepts alongside action descriptions. We evaluate VLN-
BERT on path selection in VLN, demonstrating that this
training procedure leads to significant gains over prior work
(4 absolute percentage points on leaderboard success rate).

2. Approach
We describe path selection in VLN (Sec. 2.1), our model
(Sec. 2.2), and transfer learning curriculum (Sec. 2.3).

2.1. Vision-and-Language Navigation as Path Selection
In Vision-and-Language Navigation (VLN) (Anderson et al.,
2018), agents traverse a path τ within a navigation-graph
G to follow the natural language instructions x. Following
prior work (Fried et al., 2018; Tan et al., 2019), we consider
the previously explored environment setting, in which an
agent can consider arbitrarily many paths before selecting
one to follow. In this setting, navigation involves identifying
the path that best aligns with the instructions. Concretely,
given a set of valid paths T originating from the same start-
ing position and an instruction x, the problem of navigation
is to identify a path τ∗ such that

τ∗ = argmax
τ∈T

f(τ, x) (1)

for some compatibility function f that determines if the path
follows the instruction and ends near the goal. To focus on

transfer learning, this work addresses learning the function
f given a set of paths T ′ generated with beam-search on the
follower agent from (Tan et al., 2019).

2.2. Modeling Path-Instruction Compatibility
We model f(τ, x) as a visiolinguistic transformer-based
model denoted as VLN-BERT (illustrated in Figure 3). The
architecture of VLN-BERT is structurally similar to ViL-
BERT (Lu et al., 2019), which is composed of two BERT-
like (Devlin et al., 2018) processing streams that that operate
on visual and textual inputs, respectively. The two streams
are connected using co-attention transformer layers, which
attend from the vision stream over language stream and
vice versa. By design, VLN-BERT reuses large parts of the
ViLBERT architecture to enable straight-forward transfer of
visual grounding learned from large-scale web data.

Representing Trajectories and Instructions. Predicting
path-instruction compatibility requires jointly reasoning
over a sequence of panoramic images and a sequence of
instruction words (Figure 1 right). We represent each
panorama as a set of image regions {r(i)1 , . . . , r

(i)
K } (gen-

erated by an object detector). Thus, the inputs to VLN-
BERT are “visual tokens” representing each region from
each panorama and “language tokens” for each word in
the instruction. Special IMG tokens are used to separate
panoramas and a CLS token separates the two modalities.

A common practice with BERT-like models is to add posi-
tional embeddings to the input representations that encode
relationships between tokens. For language, this amounts
to an index-in-sequence encoding. For panoramic trajecto-
ries the relationship between image regions is significantly
more complex. First, each region corresponds to a different
heading and elevation relative to the panoramic coordinate
system. Further, each panorama within the sequence corre-
spond with different positions in the environment. These
geometric relationships are important for language-guided
navigation – after all, something on your left going one way
is on your right if you go in the opposite direction. Thus, we
add a learned panoramic positional embedding that encodes
spatial information about each region. Finally, the input
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Figure 3. We propose VLN-BERT, a visiolinguistic transformer-based model that extends the model from (Lu et al., 2019) to processes
image regions from a sequence of panoramas and word tokens from navigational instruction to solve path selection in VLN.

representation for a region is composed of the element-wise
sum of this positional embedding, a panoramic sequence
embedding, and the image region features.

Training for Path Selection. To train VLN-BERT, we con-
sider a four-way multiple choice setting. For a given instruc-
tion, we sample four paths out of which only one is suc-
cessful. We pass each path-instruction pair to VLN-BERT
and extract the final representations corresponding to the
CLS and first IMG token. The element-wise multiplication
of these representations are passed through a linear layer to
produce a compatibility score. The scores are normalized
via a softmax and supervised with cross-entropy loss.

2.3. Pretraining Curriculum
VLN-BERT was specifically designed to enable transfer
learning from language (Devlin et al., 2018) and visiolin-
guistic (Lu et al., 2019) models trained on large-scale web
corpora. This transfer is especially important in the VLN
task which is relatively data-sparse. To overcome this chal-
lenge, we consider a three stage curriculum focused on
learning language, visual grounding, and action grounding.

– Stage 1: Language. To develop language understand-
ing, we initialize the language stream of our model with
weights from a BERT (Devlin et al., 2018).

– Stage 2: Visual Grounding. Starting from a pretrained
BERT model, Lu et al. train both streams of ViLBERT
on the Conceptual Captions dataset (Sharma et al., 2018)
under a masked multimodal language modelling and mul-
timodal alignment objectives (Lu et al., 2019). In this
stage, we initialize both the vision and language streams
with weights from ViLBERT.

– Stage 3: Action Grounding. In the final stage, we pair
paths and instructions from VLN and train the model
under the masked multimodal modelling objective from
(Lu et al., 2019). While the previous stage learns to
ground visual concepts, this stage additionally exposes
the model to actions and their trajectory-based referents.

After these pretraining stages, we fine-tune VLN-BERT for
path selection as described previously.

3. Experiments
We conduct experiments using the Room-to-Room (R2R)
navigation task (Anderson et al., 2018) (produced using the

Matterport3D dataset (Chang et al., 2017)). To generate
a dataset for path selection we run beam search on the
follower model from (Tan et al., 2019), producing up to
30 candidate paths for each instruction in R2R. We report
results for selecting one path out of these candidates.

Evaluation Metrics. We compare performance using stan-
dard VLN metrics – success rate (SR), navigation error
(NE), path length (PL), success rate weighted by path length
(SPL). For path selection we calculate metrics using only
the selected path, however, for the VLN leaderboard results
we prepend the exploration path to the selected path (which
affects the path length based metrics PL and SPL).

3.1. Results
Pretraining Curriculum Ablation Study. The results in
Table 1 demonstrate that in general, each pretraining stage
contributes to performance. In particular, pretraining on
image-text pairs (stage 2) and path-instruction pairs (stage
3) similarly improve SR (by 4.5 and 4.9 absolute percent-
age points, respectively). However, when the two stages
are combined in series the SR is 9.2 absolute percentage
points over the next best setting. This substantial level
of improvement suggests that not only does pretraining
on webly-supervised image-text pairs from (Sharma et al.,
2018) improve performance, but it also constructively sup-
ports the action grounding stage (stage 3) of pretraining.

Baseline comparisons. Table 2 compares VLN-BERT with
the follower and speaker models from (Tan et al., 2019)
(state-of-the-art on the VLN leaderboard). In the single
model setting, VLN-BERT (row 3) is 4.6 absolute percent-
age points better on SR than either baseline. The ensemble
model setting demonstrates that when all three models are
linearly combined (row 7), their performance is 3.0 absolute
percentage points higher on SR than the next best ensemble.

VLN Leaderboard. As shown in Table 3, on the VLN
leaderboard our three-model ensemble achieves a success
rate of 73%, which is 4 absolute percentage points greater
than previously published work (Tan et al., 2019).

4. Conclusion
In this work, we demonstrated internet-to-embodied transfer
of visual concept grounding – leveraging large-scale image-
text data from the web to improve a discriminative path-
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Table 1. Pretraining curriculum ablation study demonstrating the effectiveness of internet-to-embodied transfer of visual grounding.

Pretraining Stage Val Seen Val Unseen

#
LANGUAGE

ONLY
VISUAL

GROUNDING
ACTION

GROUNDING PL NE ↓ SPL ↑ OSR ↑ SR ↑ PL NE ↓ SPL ↑ OSR ↑ SR ↑

VLN-BERT

1 (NO PRETRAINING) 10.78 6.78 0.35 54.22 37.55 10.29 6.81 0.27 50.62 30.52

2 X 10.33 4.89 0.55 69.31 58.73 9.59 5.47 0.41 57.34 45.17
3 X X 10.42 4.48 0.58 71.57 62.16 9.70 4.96 0.45 62.79 49.64
4 X X 10.51 4.28 0.60 72.65 63.82 9.81 5.05 0.46 62.75 50.02

5 X X X 10.28 3.73 0.66 76.47 70.20 9.60 4.10 0.55 69.22 59.26

Table 2. Baseline comparisons.

Val Unseen

# RE-RANKING MODEL PL NE ↓ SPL ↑ OSR ↑ SR ↑

S
IN

G
L

E
M

O
D

E
L

S 1 FOLLOWER (TAN ET AL., 2019) 9.57 5.20 0.49 58.79 52.36
2 SPEAKER (TAN ET AL., 2019) 10.71 4.25 0.49 72.07 54.66

3 VLN-BERT 9.60 4.10 0.55 69.22 59.26

E
N

S
E

M
B

L
E

M
O

D
E

L
S 4 SPEAKER + FOLLOWER (TAN ET AL., 2019) 10.10 3.32 0.63 76.63 67.90

5 SPEAKER + FOLLOWER + FOLLOWER 10.12 3.22 0.64 77.56 69.14
6 SPEAKER + FOLLOWER + SPEAKER 10.17 2.99 0.65 79.28 70.58

7 SPEAKER + FOLLOWER + VLN-BERT 10.00 2.76 0.68 81.91 73.61

Table 3. LEADERBOARD RESULTS (WITH BEAM SEARCH)

Test Unseen

RE-RANKING MODEL PL NE ↓ SPL ↑ OSR ↑ SR ↑
SPEAKER-FOLLOWER (FRIED ET AL., 2018) 1,257 4.87 0.01 96 53
TACTICAL REWIND (KE ET AL., 2019) 197 4.29 0.03 90 61
SELF-MONITORING (MA ET AL., 2019) 373 4.48 0.02 97 61
RCM (WANG ET AL., 2019) 358 4.03 0.02 96 63
ENVDROP (TAN ET AL., 2019) 687 3.26 0.01 99 69
AUXILIARY TASKS† (ZHU ET AL., 2019) 41 3.24 0.21 81 71

VLN-BERT 687 3.09 0.01 99 73

†INDICATES UNPUBLISHED/CONCURRENT WORK

instruction alignment model for VLN.
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