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Abstract
Human language is distinguished by powerful
semantics, rich structure, and incredible flexi-
bility. It enables us to communicate with each
other, thereby affecting the decisions we make
and actions we take. While Artificial Intelligence
(AI) has made great advances both in sequen-
tial decision-making using Markov Decision Pro-
cesses (MDPs) and in Natural Language Process-
ing (NLP), the potential of language to inform
sequential decision-making is still unrealized. We
explore how the different functional elements
of natural language—such as verbs, nouns and
adjectives—relate to decision process formalisms
of varying complexity and structure. We attempt
to determine which elements of language can be
usefully grounded to a particular class of decision
process and how partial observability changes the
usability of language information. Our work show
that more complex, structured models can capture
linguistic concepts that simple MDPs cannot. We
argue that the rich structure of natural language
indicates that reinforcement learning should fo-
cus on richer, more highly structured models of
decision-making.

1. Introduction
Artificial Intelligence (AI) is concerned with designing
agents that exhibit intelligent behaviour. These agents
are typically formulated as sequential decision-making pro-
cesses: systems that perceive their environment via sensors,
and then must select actions to maximise a utility function.
Markov Decision Processes (MDPs) (Puterman, 1994) are
widely used to model such tasks, and many extensions have
been proposed to model more complex situations by includ-
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ing richer structure.

Language is considered a hallmark of human intelligence—
one of the key characteristics that sets us apart from other
animals species. The use of language enables the transmis-
sion, storage, and evolution of knowledge for humans, and
thereby supports sequential decision-making. However, hu-
man language is vastly complex. It is marked by semantics,
pragmatics, rich syntactic structure, and levels of ambigu-
ity, and the problem of having a computer understand (or
generate) it fluently is still unsolved. Therefore, the integra-
tion of natural language and decision-making models is of
particular interest to researchers aiming to create integrated,
general-purpose intelligent agents.

Integrating language information and decision-making
agents in the context of Reinforcement Learning (RL) has
resulted in marked gains in performance (Luketina et al.,
2019). However, there has been relatively little investigation
into how the form and structure of the decision process mod-
eled by MDPs—of which there are several classes modeling
varying structure and complexity—might be reflected in
the natural language appropriate for communicating with
an agent solving one. We consider the following question:
what parts of speech are appropriate when communicating
about what classes of MDPs? As our tasks and models grow
increasingly more complex, does the spectrum of language
required also broaden? Similarly, does the complexity of
natural language suggest that humans represent their own
decision-making processes using structure models?

2. Background
2.1. Classes of Markov Decision Processes

In its simplest form, a Markov Decision Process (MDP)
(Puterman, 1994) is specified by the tuple (S,A,T ,R, γ),
where S denotes a set of states, A denotes a set of actions
the agent can take, T : S ×A→ ∆(S) denotes a transition
probability distribution that represents the probability of
transitioning to state s′ ∈ S when action a ∈ A is taken
while in state s ∈ S, R denotes a task-specific reward
function and γ denotes a discount factor. An agent solving
an MDP is typically tasked with finding a policy π, mapping
states to actions, that maximises the discounted cumulative
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rewards obtained over time:
∑∞

t=0 γ
trt, where rt is the

reward obtained at time t. In hierarchical reinforcement
learning (Barto and Mahadevan, 2003), the agent is able
to structure its policy to introduce higher-level, temporally
abstract, actions, often called options (Sutton et al., 1999).

MDPs model the special case where the agent is able to
perceive, at every timestep, all the information it requires
to decide which action to take. In the more general case,
the agent’s sensors at each timestep only offer a limited
view of the state of its environment. Partially Observable
Markov Decision Processes (POMDP) (Kaelbling et al.,
1998) model this case by extending the MDP tuple to be
(S,A,T ,R, Ω,O, γ) where the set Ω represents the set of
observations that the agent can get and O : S ×A→ ∆(Ω)
is the observation function such that O(s, a, z) = p(z|s, a),
i.e. when the agent in state s ∈ S executes action a ∈ A,
O(s, a, z) is the probability of getting the observation z ∈
Ω; the agent never has direct access to S. The remaining
elements are defined as in the MDP case.

The basic MDP and POMDP formalisms are essentially
unstructured: while they specify the form of the decision
process, they do not impose any further structure or com-
plexity on the form of the states, actions, and observations
available to the agent. These formalisms have been extended
to describe more structured decision processes. We consider
the following types of structure in this paper:

Factored Factored MDPs (Guestrin et al., 2003; Koller
and Parr, 2000) and Factored POMDPs (Williams
et al., 2005; Katt et al., 2019) structure the state
as a vector of state variables s = {s1, s2, ..., sn}.
These variables can typically be partitioned in factors
szj ⊂ {s1, s2, ..., sn}. This factorisation can be found
naturally when modeling natural systems where state
variables have clear semantics. This factored repre-
sentation is also reflected in the transition function
that can be written as the product of such factors zj ,
which satisfy the conditional independence property,
i.e. Pzj (s′|s, a) = Pzj (s′|szj , a).

Object Oriented Object-Oriented MDPs (OO-MDP)
(Diuk et al., 2008) and POMDPs (OO-POMDPs)
(Wandzel et al., 2019) further structure the state
space by introducing the concepts of objects and
object classes. Each object class is defined by a set of
attributes (state variables), and each object instance has
a state defined by assigning values to these attributes.
The state of the entire environment is the union of the
state of its constituent objects, thus allowing a more
efficient and understandable representation.

Parameterised Actions Parameterised Action MDPs
(PAMDP) (Masson et al., 2016) extend the set of
actions A to be parameterised by a vector x ∈ Rma .

An action selection by the agent is then a pair
(a,x) specifying the discrete actions as well as its
parametrisation (for example, to kick a ball with
a certain amount of force, or to move at a certain
velocity). The extension of the model to the POMDP
case is straightforward, and text-based games are
an existing use of PA-POMDPs (Narasimhan et al.,
2015).

Decentralised Decentralised MDPs (Dec-MDP) (Bern-
stein et al., 2002) and POMDPs (Dec-POMDP) (Nair
et al., 2003) extend the MDP and POMDP formalisms
to model the multi-agent case, in environments consist-
ing of multiple agents—that collectively maximize the
same reward function—selecting actions in a decen-
tralised manner.

Each of these formalisms are obtained by assuming more
structure about the basic MDP or POMDP formalism. That
structure adds complexity and narrows the set of tasks to
which the model is applicable, but at the same time gives
the agent the opportunity to exploit the additional structure
during learning or planning.

2.2. Syntactic Categories in Language

Syntactic categories, also known as parts-of-speech (POS),
are classes of words that have semantic tendencies—for
example, nouns describe objects while adjectives refer to
properties. They are broadly categorised into closed class
(e.g., determiners such as “a, the” or prepositions such as

“on, at”, that are rarely coined or expanded as times change)
and open class (e.g., verbs such as “zoom, fax” or nouns like

“Macbook, Roomba” that are continually created as needed).
There are four main open classes i.e., nouns, verbs, ad-
jectives, adverbs each of which are subcategorised. We
refer readers to the work of Marcus et al. (1993) for a full
overview of parts-of-speech and the 45 categories annotated
by the Penn Tree Bank. POS categories are important for
several language understanding tasks, since they reveal im-
portant information about properties of the word, as well as
its context. For example, for words that have different POS
tags in different concepts (e.g., “‘dash” as a verb versus

“dash” as a noun), knowing their POS tags could help resolve
ambiguity to understand the meaning of the sentence.

2.3. Different Syntax for Different Languages

We should note that, although the four main POS categories
seem like fundamental syntactic constructs, some languages
(like Riau Indonesian or Tongan) do not even make a dis-
tinction between nouns and verbs (Broschart, 1997). There
also exist languages devoid of a certain class e.g., adjectives
in Korean, where words that would normally be adjectives
in English translate to a subclass of verbs in Korean (“beau-
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Tag Description Example

CC coordinating conjunction and, or, if
V verb move, push, pull
IN preposition above, below, on
NN common noun wall, location
NNP proper noun Taxi, Agent
ADJ adjective blue, round, small
EX existential ’there’ there
MD modal can, should
ADV adverb quickly, slowly
PRP personal pronoun your, their

Table 1. Parts of speech (as tagged by the PTB) for word classes
important to decision making.

tiful”→ “to be beautiful”). Thus, although the different
languages vary in the syntactic categories they cover, their
functionality can be replicated, albeit at a cost (e.g., larger
number of words).

3. Language Elements for Describing
Decision Processes

We now draw connections between which part-of-speech
elements can be related to each model class. We summarise
these facts in Table 2.

Unstructured MDPs This is the base formalism for de-
cision processes in AI and the one that includes the least
structure. The state representation is completely unstruc-
tured and, hence, tying nouns to elements of the model
can be difficult. However, proper nouns relate to states
with certain characteristics such as goal states. Actions are
referred to using intransitive verbs—as there is no con-
cept of an object to apply the action on. Conditional state-
ments and connecting words i.e., conjunctions like “and, or”
are used to tie together specifications of parts of the MDP.
Prepositions denoting order relations, such as “before, af-
ter” are used to describe ordering a sequence of actions
or sub-policies. Determiners such as “more, less, equal”,
cardinal quantities and comparative adjectives/adverbs
are used to specify rewards.

Factored MDPs In addition to the elements above,
proper nouns can be used to name factors. These nouns
are unique in the sense that no two factors are the same. As
nouns, we can qualify them by using adjectives that can
specify properties of the factor such a particular setting of
the factor. For instance, if we consider the coordinates of a
robot (x, y) to be “location”, “home location” could be the
coordinates (0, 0).

OO-MDPs Object classes in OO-MDPs correspond to the
concept of common nouns. In this way, we can use deter-

miners such as “a, the” to talk about a specific instance
of an object or about any object of a class. As before, ad-
jectives qualify object instances. In this way, we can map
qualified nouns to instances with particular attributes—e.g.
the red ball. With different numbers of objects, we can use
quantifiers such as “there is/are, all”. Specific instances
of an object can be specified by proper nouns. Given the
existence of objects, transitive verbs can be mapped to
actions that affect objects, in this way information about
the dynamics of the world can be represented with more
complex constructs as the transition function relates to the
objects’ state. The fact that humans have rich notions of
“nouns” and concepts hints that they are likely using this sort
of structure.

PAMDPs In this class of MDPs, we have actions that are
parameterized, thus calling for adverbs as a way to qualify
action (verbs). In this way, we can now realise actions that
correspond to verb phrases such as “to go up slowly”.

Dec-MDPs In these models, we have referential expres-
sions, in order to denote concepts of oneself and other ex-
isting entities in the world for multi-agent environments.
Therefore pronouns (e.g., personal, possessive) come into
play.

Until
now, we have described the parts-of-speech that are relevant
to increasingly more structured MDPs. Analogously, we
proceed with the partially observable formalisms.

Unstructured POMDPs In these models, the important
difference is the presence of partial observability. Part-of-
speech that relate to MDPs are still pertinent here. However,
we can use POS elements that can convey facts and uncer-
tainty about the world such as modal verbs like “could,
should” that allow to specify information about the world.
Facts are necessary in partially observable domains in order
to reduce the uncertainty the agent has about the state of
the world. This is not the case when the state is completely
observable as the agent knows all relevant attributes of its
environment at each timestep.

Factored POMDPs Along with the above POMDP ele-
ments, proper nouns are used in the same way as in Fac-
tored MDPs. Similarly, adjectives can specify properties of
state variables, that differentiate them from other states.

OO-POMDPs In OO-POMDPs, we need to express facts
about the objects. Therefore, prepositions that denote order
such as “in, at, on, below, above” are necessary to state
relative order among object instances’ states. For instance,
if we instantiate an object class “cup”, we can use specify
facts about an object class: the cup is in the kitchen.
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MDP V CC IN Quant NN NNP ADJ EX MD ADV PRP

MDP
√ √ √

Factored MDP
√ √ √ √ √

OO-MDP
√ √ √ √ √ √ √

Unstructured POMDP
√ √ √ √ √

Factored POMDP
√ √ √ √ √ √ √

OO-POMDP
√ √ √ √ √ √ √ √ √

LTL-MDP
√ √ √ √

Dec-MDP
√ √ √ √

Dec-POMDP
√ √ √ √ √ √

Dec-OO-POMDP
√ √ √ √ √ √ √ √ √ √

Table 2. Differences in complexities in different classes of MDPs. Each row shows a class of MDPs while columns show POS categories
that can be used to ground to existing parts of each model, as enumerated in Section 3.

Dec-POMDPs Analogously to the observable case, we
have that in this case we need to specify facts about other
agents’ state and policies. As in OO-POMDPs, preposi-
tions are necessary to provide both spatial information about
the agents and temporal information—e.g. “before, after”—
when ordering and coordination among agents’ policies is
required.

Non-Markovian Policies Through the combination of
conditional statements and temporal prepositions such as

“until, before, after”, it is possible to specify instructions for
a task which relates to further structure in the action space
of the model. These instructions are related to (sub-)policies
in any of the models we have discussed thus far. However,
these may be non-Markovian given that the use of preposi-
tions such as “until” implicitly requires the agent to record
past actions and states in order to determine if a condition
is satisfied. Linear Temporal Logic (LTL) has been used in
several works (Ding et al., 2011; Oh et al., 2019) that use
LTL-MDPs to handle such dependencies.

4. Discussion and Conclusions
In this work, we were primarily interested in characterising
what elements of natural languages are important to different
MDPs. The relation between parts-of-speech and decision
making models we have laid out here are by definition true.
Which means that it is the case that certain parts-of-speech
may become dispensable given the type of decision process
the agent must solve. Therefore, our claims are not about
trying to establish an empirical performance benchmark, but
instead about establishing what elements of language are
necessary for the different types of decision process.

We have attempted to use insights from syntactic constructs
in natural languages to characterise the differences in the
forms of language useful for communicating with agents
using different classes of decision-making models. We posit
that the richness of language has its roots in the richness of
the decision process that humans are solving. From the par-

allels drawn in the previous section, we can see how much
of language can be (partially) related to elements of the
different MDP classes, which in turn suggests the different
kinds of structure and abstractions that humans might be im-
plicitly using to tractably solve their own decision problems.
This suggests that the form of language used to describe a
task has the potential to aid in automatically determining
the structure and abstraction necessary for an agent to solve
that task.

Moreover, we wish to emphasize that our exploration shows
that much of humans’ use of language is for conveying fac-
tual information about objects and object classes, which
strongly suggests that human decision processes are both
partially observable and highly structured. However, the
flexible nature of language, both in the way that new
elements—such as those of the open classes of syntactic
elements—can be defined based on known elements and
how verbs and nouns can be qualified in new ways, could
result from the flexibility with which we can generate new
abstractions to handle new problems and better handle par-
tial observability.

Current RL research does not use highly structured and
partially observable models—many current efforts go into
designing algorithms with as little structural bias as possible.
The richness of human language—and its clear links to
richer, more structured representations—suggests that RL
research should perhaps focus instead on highly structured
formalisms, especially for research on grounding language
in RL.
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