
PixL2R: Guiding Reinforcement Learning using
Natural Language by Mapping Pixels to Rewards

Prasoon Goyal 1 Scott Niekum 1 Raymond J. Mooney 1

Abstract
Reinforcement learning (RL), particularly in
sparse reward settings, often requires pro-
hibitively large numbers of interactions with the
environment, thereby limiting its applicability
to complex problems. To address this, several
prior approaches have used natural language to
guide the agent’s exploration. However, these
approaches typically operate on structured rep-
resentations of the environment, and/or assume
some structure in the natural language commands.
In this work, we propose a model that directly
maps pixels to rewards, given a free-form natural
language description of the task, which can then
be used for policy training. Our experiments on
the Meta-World robot manipulation domain show
that language-based rewards significantly improve
learning. Further, we analyze the resulting frame-
work using multiple ablation experiments to better
understand the nature of these improvements.

1. Introduction
While reinforcement learning (RL) has been successfully
used to solve many problems, designing good reward func-
tions continues to remain a challenge, limiting its applica-
bility to more complex problems. To address this problem,
several methods have been proposed that involve guiding an
agent using natural language commands.

However, these techniques are still quite restrictive, often
requiring object properties to be predefined (MacGlashan
et al., 2014; Arumugam et al., 2017; Williams et al., 2017),
assuming some structure in the natural language commands
(Bahdanau et al., 2018), and/or requiring hand-designed
features (Kuhlmann et al., 2004; Branavan et al., 2012b),
which is challenging to scale. In this work, we propose a
framework that makes no such assumptions, and directly
learns to map pixels to rewards given a free-form natural

1Department of Computer Science, The University of
Texas at Austin. Correspondence to: Prasoon Goyal
<pgoyal@cs.utexas.edu>.

language description of the task. Our model is based on
the framework proposed by Goyal et al. (2019), which we
describe next.

2. Prior Work: LEARN
Consider an extension of the standard Markov Decision
Process (MDP), defined as M ′ = 〈S,A, T,R, γ, L〉, where
L is an instruction describing the task using natural lan-
guage, and the other quantities are as defined in a standard
MDP. Goyal et al. (2019) proposed a framework for learn-
ing in this modified MDP (which they denote as MDP+L)
consisting of the following two phases.

Phase 1: A neural network – the LanguagE Action Reward
Network (LEARN) – is trained to predict whether a given
trajectory and language are related or not. This requires
paired 〈trajectory, language〉 data in the environment. As
a preprocessing step, each trajectory is first encoded into
an action frequency vector, which is a vector of size |A|,
with the ith component proportional to the number of times
action i appears in the trajectory. The neural network takes
this action frequency vector and language as inputs to pre-
dict the relatedness between the trajectory and language,
which is modelled as a binary classification problem.

Phase 2: Next, a policy is trained for a new task in the
MDP+L setting – the extrinsic reward from the environment
is assumed to be sparse (i.e. 1 if the agent successfully com-
pletes the task, and 0 otherwise), and the agent additionally
gets a language command describing the task. At every step,
an action frequency vector is created from the sequence of
past actions and passed to the pretrained LEARN model
along with the given command. The LEARN model gener-
ates probabilities over classes RELATED and UNRELATED,
which are used to generate intermediate rewards for reward
shaping (Ng et al., 1999).

A significant limitation of this work is that the relatedness
model only uses the frequency with which each action is
executed in the trajectory. As such, information in the lan-
guage instructions that requires knowledge of the state (e.g.
how to interact with objects) is not helpful.

For instance, consider the domain shown in Figure 1, which

PixL2R: Guiding Reinforcement Learning using Natural Language by Mapping Pixels to Rewards

Figure 1. A simulated robot completing a task in the Meta-World domain

is adapted from the recently released Meta-World bench-
mark (Yu et al., 2019). The scene consists of a robot in-
teracting with an object in the presence of zero or more
other objects. Different scenarios can be created in the do-
main by randomizing the set of objects in the scene and
their positions. Since linguistic descriptions of such tasks
would typically be in terms of the object to be interacted
with, whose position could change across different scenar-
ios, learning a relatedness model between actions and lan-
guage without taking into account the state (i.e. the image)
will not generalize across scenarios. Thus, we extend prior
work to learn a relatedness model between sequences of
states and language descriptions, and show that generating
language-based scores from the resulting model improves
the efficiency of policy training on unseen scenarios.

3. Approach
To apply the framework described in Section 2 to domains
where using the state information is crucial to understanding
language (e.g. the domain in Figure 1), we propose PixL2R,
which takes in the pixel representations of the states and a
natural language description of the task, and maps them to
rewards. The framework consists of a supervised learning
phase (Section 3.1) and a policy training phase (Section 3.2)
as in prior work, but with modifications as described below.

3.1. PixL2R: Pixels and Language to Reward

First, a relatedness model between a trajectory and a lan-
guage is learned given paired data. Our model is based on
that proposed by Goyal et al. (2019); however, instead of
representing a trajectory using an action frequency vector
before feeding into the neural network, we feed the sequence
of frames in the trajectory directly into the neural network.

3.1.1. NETWORK ARCHITECTURE

Using sequence of frames instead of an action frequency
vector requires addressing perceptual aliasing and occlu-
sion. Thus, our network architecture is designed to take

multiple views as inputs. Specifically, we use three different
viewpoints.

An independent CNN is used for encoding the sequence
of frames from each viewpoint to generate a fixed-size rep-
resentation for each frame. These sequence of vectors are
concatenated across the views to generate a single sequence
of fixed-size vectors, which is then passed through a two-
layer LSTM to get an encoding of the entire trajectory.

The language description is converted to a one-hot repre-
sentation, and passed through an embedding layer, followed
by a two-layer LSTM. The outputs of the LSTMs encod-
ing the trajectory and the language are then concatenated,
and passed through a sequence of fully-connected layers to
generate a relatedness score.

See supplementary material (Section A) for the viewpoints
used, and a diagram of the neural network.

3.1.2. DATA AUGMENTATION

Frame dropping. Given an input trajectory, each frame is
independently selected with a probability 0.1, and dropped
with a probability 0.9. The resulting sequence of frames is
passed through the network. This makes the training faster
by reducing the input size, as well as making the network
robust to minor variations in trajectories. During policy
training, the trajectories are uniformly subsampled to keep
1 frame in every 10.

Incomplete trajectories. Since during policy training,
the model will have to make predictions for incomplete
trajectories, we use incomplete trajectories during super-
vised training as well. To do this, given a trajectory of
length L, we sample l ∼ Uniform{1, . . . , L}, and use the
first l frames of the trajectory.

3.1.3. TRAINING OBJECTIVES

Classification. First, we trained the neural network us-
ing binary classification, as in the original work. The final
output of the network is a two-dimensional vector, corre-

PixL2R: Guiding Reinforcement Learning using Natural Language by Mapping Pixels to Rewards

sponding to the logits for the two classes – RELATED and
UNRELATED.

Since partial trajectories might be difficult to classify
as related or unrelated, we experiment with an alternate
regression-based setting, described below.

Regression. In this setting, the model predicts a single
relatedness score between the given trajectory and language,
which is mapped to [−1, 1] using the tanh() function. The
ground truth score is defined as s · l

L , where s = 1 for posi-
tive and s = −1 for negative examples, l is the length of the
incomplete trajectory and L is the length of the complete
trajectory as described above. Thus, given a description,
a complete related trajectory has a ground truth score of
1, while a complete unrelated trajectory has a score of −1.
Shorter trajectories smoothly interpolate between these val-
ues, with very small trajectories having a score close to 0.
The network is trained to minimize the mean squared error.

3.2. Policy Training Phase

Having learned a PixL2R model as described above, the
relatedness scores from the model can be used to generate
language-based intermediate rewards during policy training
on new scenarios. During policy training, the agent receives
a natural language description of the goal, in addition to
the reward from the environment. The PixL2R model is
used to score trajectories executed by the agent against the
given natural language description, to generate intermediate
rewards. We used potential-based shaping rewards (Ng et al.,
1999), which are of the form F (st) = γ · φ(st)− φ(st−1),
where st is the state at timestep t and φ : S → R is a
potential function. In our case, st is the sequence of states
encountered by the agent up to timestep t in the current
episode. Ng et al. (1999) and Grzes (2017) show that
potential-based shaping rewards do not change the optimal
policy, that is, the optimal policies under the original reward
function R and the new reward function R+F are identical.

For the classification setting, we used the potential function
φ(st) = pR(st)− pU (st), as defined by Goyal et al. (2019).
Here, pR and pU are the probabilities assigned to the classes
RELATED and UNRELATED respectively. For the regres-
sion setting, the relatedness score predicted by the model
is directly used as the potential for the state. Note that for
both the settings, the potential of any state lies in [−1, 1].

4. Experiments
4.1. Dataset

We use Meta-World (Yu et al., 2019), a recently proposed
benchmark for meta-reinforcement learning, which consists
of a simulated Sawyer robot and everyday objects such as a
faucet, windows, coffee machine, etc. Tasks in this domain

involve the robot interacting with these objects, such as
turning the faucet clockwise, opening the window, pressing
the button on the coffee machine, etc. Completing these
tasks requires learning a policy for continuous control in a
4-dimensional space (3 dimensions for the end-effector posi-
tion, and the fourth dimension for the force on the gripper).
While the original task suite consists of only one object in
every task, we create new environments which contain one
or more objects in the scene, and the robot needs to interact
with a pre-selected object amongst those.

In a sparse reward setting, the agent is given a non-zero
reward only on successfully interacting with the pre-selected
object. In the absence of any other learning signal, the agent
might have to learn to approach and interact with multiple
objects in the scene in order to figure out the correct object.
Using natural language to describe the task in addition to
the sparse reward helps alleviate this issue.

Different scenarios were created by randomizing the object
to be interacted with, the distractor objects, and their posi-
tions. Amazon Mechanical Turk was then used to obtain
free-form natural language descriptions for these tasks. The
details of the process, as well as some example descriptions
can be found in the supplementary material (Section C).

4.2. Policy Training with Language-based Rewards

To empirically evaluate the effectiveness of PixL2R, the
following setup was used. We had a total of 16 test sce-
narios, with 3 descriptions for each. More details of the
training/validation/test splits can be found in the supplemen-
tary material (Section B). Each policy training was run for
500,000 timesteps using the PPO algorithm, and the number
of successful completions of the task were recorded. The
maximum episode length was restricted to 500 timesteps.
The robot’s end-effector was set to a random position within
a predefined region at the beginning of each episode.

First, 15 policies were trained using sparse rewards
(Sparse) on each test scenario with different seeds. Next,
policies were trained with language-based rewards using
the regression setting, in addition to the sparse rewards
(Sparse+RGR). For each scenario, 5 policies were trained
with different seeds for each of the 3 test descriptions, re-
sulting in a total of 15 policy training runs per scenario.

A comparison of policy training curves for Sparse and
Sparse+RGR rewards is shown in Figure 2 (left). Each
curve is obtained by averaging over all runs (16 scenarios ×
15 runs per scenario) for that reward type. The results verify
that language-based rewards result in higher performance
on average than sparse ones.

Next, language-based rewards were used in addition to hand-
designed rewards using a similar methodology, and the cor-
responding learning curves for Dense and Dense+RGR

PixL2R: Guiding Reinforcement Learning using Natural Language by Mapping Pixels to Rewards

Figure 2. A comparison of policy training curves for different reward models. The shaded regions denote 95% confidence intervals.

are shown in Figure 2 (right). Interestingly, we find that
using language-based rewards in conjunction with hand-
designed rewards result in an improvement even over hand-
designed rewards.

Further, the improvements were found to be statistically
significant, both in sparse and dense reward settings, sug-
gesting that the proposed approach can be used to make
policy training more efficient in both sparse and dense re-
ward settings.

For the dense reward setting, policy training with language-
based rewards using the classification setting (Dense+CLS)
was also performed. Although it results in an improvement
in the mean successful episodes over Dense rewards, the
improvement was not statistically significant, suggesting
that the proposed regression setting helps learning more
effectively from partial trajectories. More details for the re-
sults on the classification setting, as well as other additional
experiments used to analyze the supervised learning phase
can be found in the supplementary material (Section C).

5. Related Work
A number of prior approaches have been proposed to use
language to guide a learning agent.

Some approaches involve mapping natural language instruc-
tions directly to an action sequence to be executed (Tellex
et al., 2011; Sung et al., 2018). Our approach is different
from these approaches in that we use language to generate
auxiliary rewards, that can then be used to learn a policy
using standard RL, allowing the agent to learn in more com-
plex settings where offline learning is insufficient.

Other prior approaches map natural language to a reward
function (MacGlashan et al., 2014; Arumugam et al., 2017;
Williams et al., 2017). All these approaches assume a spe-

cific structure of the reward functions, while our approach
does not make any such assumptions.

A number of approaches require designing state- and/or
linguistic features to guide the learning agent (Kuhlmann
et al., 2004; Branavan et al., 2012b; Kaplan et al., 2017;
Waytowich et al., 2019), whereas we propose to learn the
association between language and trajectories from a small
set of human-provided descriptions.

Some approaches learn to ground language while interact-
ing with the environment (Branavan et al., 2012a; Misra
et al., 2018; Bahdanau et al., 2018). Our approach involves
a separate supervised learning phase to ground language,
which does not require interacting with the environment.

Fu et al. (2019) learn a language-conditioned reward func-
tion, but require knowledge of environment dynamics to
compute the optimal policy during training. Narasimhan
et al. (2015) use natural language to transfer dynamics
across environments. Blukis et al. (2019) generate a state
visitation distribution given a natural language instruction,
which is then used to generate rewards for policy training.

6. Conclusion
We proposed an approach for mapping pixels to rewards,
conditioned on a free-form natural language description
of the task. Given paired 〈trajectory, language〉 data, first,
a relatedness model – PixL2R – is learned between a se-
quence of states and a natural language description using
supervised learning. This model is then used to generate
intermediate rewards for policy training, for a task with
natural language description. Our experiments on a simu-
lated robot manipulation domain show that the proposed
approach can significantly speed up policy learning, both in
sparse and dense reward settings.

PixL2R: Guiding Reinforcement Learning using Natural Language by Mapping Pixels to Rewards

References
Arumugam, D., Karamcheti, S., Gopalan, N., Wong, L. L.,

and Tellex, S. Accurately and efficiently interpreting
human-robot instructions of varying granularities. arXiv
preprint arXiv:1704.06616, 2017.

Bahdanau, D., Hill, F., Leike, J., Hughes, E., Hosseini, A.,
Kohli, P., and Grefenstette, E. Learning to understand
goal specifications by modelling reward. arXiv preprint
arXiv:1806.01946, 2018.

Blukis, V., Terme, Y., Niklasson, E., Knepper, R. A., and
Artzi, Y. Learning to map natural language instructions
to physical quadcopter control using simulated flight. In
Conference on Robot Learning (CoRL), 2019.

Branavan, S., Kushman, N., Lei, T., and Barzilay, R. Learn-
ing high-level planning from text. In Proceedings of the
50th Annual Meeting of the Association for Computa-
tional Linguistics: Long Papers-Volume 1, pp. 126–135.
Association for Computational Linguistics, 2012a.

Branavan, S., Silver, D., and Barzilay, R. Learning to win
by reading manuals in a monte-carlo framework. Journal
of Artificial Intelligence Research, 43:661–704, 2012b.

Fu, J., Korattikara, A., Levine, S., and Guadarrama, S.
From language to goals: Inverse reinforcement learn-
ing for vision-based instruction following. arXiv preprint
arXiv:1902.07742, 2019.

Goyal, P., Niekum, S., and Mooney, R. J. Using natural
language for reward shaping in reinforcement learning.
In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, Macao, China, August 2019.

Grzes, M. Reward shaping in episodic reinforcement learn-
ing. 2017.

Kaplan, R., Sauer, C., and Sosa, A. Beating atari with
natural language guided reinforcement learning. arXiv
preprint arXiv:1704.05539, 2017.

Kuhlmann, G., Stone, P., Mooney, R., and Shavlik, J. Guid-
ing a reinforcement learner with natural language advice:
Initial results in robocup soccer. In The AAAI-2004 work-
shop on supervisory control of learning and adaptive
systems. San Jose, CA, 2004.

MacGlashan, J., Littman, M., Loftin, R., Peng, B., Roberts,
D., and Taylor, M. E. Training an agent to ground com-
mands with reward and punishment. In Proceedings of
the AAAI Machine Learning for Interactive Systems Work-
shop, 2014.

Misra, D., Bennett, A., Blukis, V., Niklasson, E., Shatkhin,
M., and Artzi, Y. Mapping instructions to actions in 3d
environments with visual goal prediction. arXiv preprint
arXiv:1809.00786, 2018.

Narasimhan, K., Kulkarni, T., and Barzilay, R. Language
understanding for text-based games using deep reinforce-
ment learning. Empirical Methods in Natural Language
Processing (EMNLP), 2015.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In ICML, volume 99, pp. 278–287, 1999.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sung, J., Jin, S. H., and Saxena, A. Robobarista: Object part
based transfer of manipulation trajectories from crowd-
sourcing in 3d pointclouds. In Robotics Research, pp.
701–720. Springer, 2018.

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R., Banerjee,
A. G., Teller, S. J., and Roy, N. Understanding natural
language commands for robotic navigation and mobile
manipulation. In AAAI, volume 1, pp. 2, 2011.

Waytowich, N., Barton, S. L., Lawhern, V., Stump, E., and
Warnell, G. Grounding natural language commands to
starcraft ii game states for narration-guided reinforcement
learning. In Artificial Intelligence and Machine Learn-
ing for Multi-Domain Operations Applications, volume
11006, pp. 110060S. International Society for Optics and
Photonics, 2019.

Williams, E. C., Rhee, M., Gopalan, N., and Tellex, S.
Learning to parse natural language to grounded reward
functions with weak supervision. In AAAI Fall Sym-
posium on Natural Communication for Human-Robot
Collaboration, 2017.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on Robot Learning (CoRL), 2019.

PixL2R: Guiding Reinforcement Learning using Natural Language by Mapping Pixels to Rewards

A. Neural Network architecture
Figure 3 shows the viewpoints used in our model. Fig-
ure 4 shows a diagram of the neural network architecture
described in Section 3.1.1.

Figure 3. Viewpoints used for data collection and experiments.

B. Dataset Details
First, 13 tasks were selected from the Meta-World task
suite. This gave us a total of 9 objects to interact with
(for 4 objects, multiple tasks can be defined, e.g. turning
a faucet clockwise or counter-clockwise). We then created
100 scenarios for each task as follows: In each scenario,
the task-relevant object is placed at a random location on
the table. Then, a new random location is sampled, and
one of the remaining objects is placed at this position. This
process is repeated until the new random location is close
to an already placed object. This results in 1300 scenarios
in total, with a variable number of objects in each scenario.

A policy was trained for each of these scenarios indepen-
dently using PPO (Schulman et al., 2017), which was then
used to generate one video of the robot completing the task
in the scenario. For this purpose, we used the dense rewards
defined in the original Meta-World benchmark for various
tasks. The median length of trajectories across all generated
videos is 131 frames. Note that our algorithm does not need
the policies used to generate the videos, so they could also
be collected using human demonstrations.

To collect English descriptions from videos of the robot
performing the tasks, Amazon Mechanical Turk (AMT) was
used. Since the models of the objects in the environment are
coarse, it is usually non-trivial to recognize the real-world
objects they represent from the models alone. To guide the
AMT workers to use the names of real-world objects the
models represent, we showed a table of the models with
prototypical images of real-world objects that closely match
the models (shown in Figure 5). This enabled us to get
descriptions that use the real-world object names, without
priming the workers with specific words.

Table 1. Examples of descriptions collected using AMT.
Object Id Description

0 Press the button.
0 Pressing the button
1 Push peg in to hole.
1 Push the green button.
2 Turn on the coffee maker
2 push in the green button
3 Push toaster handle down
3 Push down the red block.
4 pressing down the object
4 pull down the red switch
5 move the plate down
5 push down the slider
6 Close the door
6 Open the door.
7 twisting the cube
7 rotate the object
8 Rotate the lever anticlockwise
8 Turn the faucet to the right.
9 rotating the object
9 turn on the faucet

10 Open the window.
10 Open the yellow window.
11 Slide the window to the left.
11 Close the Window.
12 pull out the green block
12 Pull out the green piece

Figure 5. List of objects used

We obtained 520 descriptions in total, for an average of 40
descriptions per task. Some example descriptions collected
are shown in Table 1.

C. Details of the Experiments
C.1. Experimental Setup

For each of the 13 tasks (see Section B), the 100 scenarios
were randomly split into 80 training, 17 validation and 3
test scenarios.

For each of the test scenarios, first, policy training was
run with 15 random seeds, both in the sparse reward set-
ting (Sparse; 1 if the agent reaches the goal, and 0 other-

PixL2R: Guiding Reinforcement Learning using Natural Language by Mapping Pixels to Rewards

Figure 4. Neural network architecture: The sequence of frames from the three viewpoints are passed through three separate CNN feature
extractors. The resulting feature vectors are concatenated across views. The sequence is then passed through an LSTM to obtain an
encoding of the trajectory. The given linguistic description is converted to one-hot representation, and passed through an embedding layer,
followed by an LSTM. The outputs of the two LSTMs is concatenated and passed through a sequence of 2 linear layers (with a ReLU
activation between them) to generate the final prediction.

wise) and the hand-designed dense reward setting (Dense;
defined in the original Meta-World benchmark). Then, a
Kruskal-Wallis test was used for each scenario to identify
scenarios where there was a statistical significant differ-
ence between the number of successful episodes with sparse
rewards and with dense rewards, and the mean success-
ful episodes with dense rewards was higher than the mean
successful episodes with sparse rewards. All subsequent
comparisons were done on the 16 (out of 39) scenarios for
which this was true. Intuitively, these 16 tasks are too diffi-
cult to learn from sparse rewards, while they can be learned
using dense rewards. Therefore, language-based dense re-
wards should be useful on these tasks. The remaining tasks
are presumably either too simple that they can be learned
with sparse rewards alone, or are too difficult to learn within
500,000 timesteps even with hand-designed dense rewards.

C.2. Word-level Analysis

In order to understand how the supervised learning phase
is using different words in the description, the supervised
model was used to make predictions on the test set, and
the gradient of the loss was computed with respect to the
continuous representation of the words in the descriptions

Table 2. Average magnitude of gradients for different words in a
description for the relatedness score prediction.

Descriptions
Average magnitude of gradient for each word

1. push the green button
0.53 0.30 1.00 0.94

2. push down the red block
0.42 0.57 0.34 1.00 0.91

3. pull down the lever on the toaster
0.16 0.31 0.15 0.75 0.58 0.36 1.00

4. turn on the faucet
0.94 1.00 0.44 0.87

5. slide the green lever to the left
0.52 0.23 0.94 1.00 0.77 0.30 0.78

6. open the window
0.83 0.32 1.00

(i.e. after the embedding layer). The mean of the absolute
values of these gradients is then a measure of how much
the prediction is affected by the corresponding word. The
values are reported in Table 2, which were scaled so that the
maximum value for any description is 1.

First, we observe that for all the descriptions, the words
describing the main object have a very high average gradient

PixL2R: Guiding Reinforcement Learning using Natural Language by Mapping Pixels to Rewards

magnitude – green and button in description 1, red and
block in description 2, lever and toaster in description 3,
faucet in description 4, green and lever in description 5, and
window in description 6. Several verbs also have a high
average gradient magnitude – turn on in description 4 and
open in window. Verbs in other descriptions do not have a
high gradient magnitude because for those descriptions, the
object affords only one possible interaction, thus making the
verb less discriminatory. For the objects faucet and window,
there are two possible actions each (turning the faucet on or
off and opening or closing the window); thus the verb also
carries useful information for these objects.

This analysis suggests that the model learns to identify the
most salient words in the description that are useful to pre-
dict the relatedness between a trajectory and language.

C.3. Ablations

Having established that policy training works better with
the language-based rewards, we ran some ablation experi-
ments as described below. All the ablation experiments were
performed with language-based rewards added to dense re-
wards, since most applications of RL currently use dense
hand-designed rewards (which could be suboptimal for com-
plex tasks), and it would be informative to learn which de-
sign decisions are most important to get an improvement by
using language-based rewards in such settings.

• LastFrame: Instead of using the sequence of frames
in the trajectory, only the last frame of the trajectory
was used, both for training the PixL2R model, as well
as for policy training.

• MeanpoolLang: The LSTM used to encode the lan-
guage was replaced with the mean-pooling operation.

• MeanpoolTraj: The LSTM used to encode the se-
quence of encoded frames was replaced with the mean-
pooling operation.

• SingleView: Instead of using 3 viewpoints for the
trajectory, only one viewpoint was used.

• Dense+CLS: Instead of the regression loss, classifica-
tion loss was used, as proposed in (Goyal et al., 2019).

For each ablation, the same setup was used as for
Dense+RGR – training the PixL2R model with 8 random
sets of values of hyperparameters, and choosing the model
with the best validation accuracy. This model is used to gen-
erate rewards for policy training, for each of the 16 scenarios
with 5 random seeds for all the 3 descriptions.1

The mean successful episodes across all runs are reported
in Table 3. Further, the p-values for Wilcoxon tests between
each ablation and the Dense rewards is reported, from

1For SingleView, we used 8 random sets of hyperparameter
values for each of the three viewpoints, and chose the model with
the best validation accuracy.

Table 3. Comparison of various ablations to the Dense+RGR
model. We report the mean number of successful episodes for
each model, and the p-values for Wilcoxon test between the ab-
lated and Dense models.

Setting
Mean

Successful
Episodes

p-value
w.r.t.
Dense

Dense 79.4 -
Dense+RGR 126.9 0.0340
LastFrame 133.5 0.0114
MeanpoolLang 138.3 0.0004
MeanpoolTraj 78.4 0.9601
SingleView 100.4 0.3789
Dense+CLS 102.0 0.6384

which we can make the following observations:

• Using only the last frame (LastFrame), or using
mean-pooling instead of an LSTM to encode the lan-
guage (MeanpoolLang) does not substantially affect
the performance of the model. In both these cases, the
resulting model is still statistically significantly better
than Dense rewards. Both of these results agree with
intuition, since the last frame can be used to predict the
progress in the task, and since the linguistic descrip-
tions are not particularly complex in the given domain,
simply looking at which words are present or absent is
often sufficient to identify the task without using the
ordering information between the words.

• Using mean-pooling instead of an LSTM to encode
the sequence of frames (MeanpoolTraj) drastically
reduces the number of successful episodes, and the
resulting model is no longer statistically significantly
better than Dense. Again, this agrees with intuition,
since it is not possible to infer the direction of move-
ment of the robot from an unordered set of frames.

• Using a single view instead of multiple views
(SingleView) results in a decrease in the number
of successful episodes, and the resulting model is no
longer statisticially significantly better than Dense.
As mentioned earlier, using frames to represent tra-
jectories (instead of actions as in prior work) requires
addressing challenges such as perceptual aliasing and
occlusion, and these ablation results suggest that using
multiple viewpoints alleviates these issues.

• Using classification loss instead of regression
(Dense+CLS) also leads to a drop in performance,
again making the resulting model no longer statisti-
cally significantly better than Dense. This is con-
sistent with our initial observation, as described in
Section 3.1.3, wherein, the learning problem becomes
more difficult due to partial trajectories when the clas-
sification loss is used.

