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Abstract
Social network structure is one of the key de-
terminants of human language evolution. Pre-
vious work has shown that the network of social
interactions shapes decentralized learning in hu-
man groups, leading to the emergence of different
kinds of communicative conventions. We exam-
ined the effects of social network organization on
the properties of communication systems emerg-
ing in decentralized, multi-agent reinforcement
learning communities. We found that the global
connectivity of a social network drives the con-
vergence of populations on shared and symmetric
communication systems, preventing the agents
from forming many local “dialects”. Moreover,
the agent’s degree is inversely related to the con-
sistency of its use of communicative conventions.
These results show the importance of the basic
properties of social network structure on reinforce-
ment communication learning and suggest a new
interpretation of findings on human convergence
on word conventions.

1. Introduction
Human languages evolve as complex adaptive systems,
driven by micro-level processes and constraints (such as in-
dividual learning mechanisms and perceptual biases), macro-
level factors (such as a topology of social interactions), and
the history of their development (Steels, 2000; Christiansen
& Chater, 2008; “Five Graces Group” et al., 2009).

Linguistic communication depends on the shared knowledge
of word-to-meaning mapping conventions (Lewis, 1975),
upon which the population converges through the local in-
teractions between agents, often with no central controller
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available (Baronchelli, 2018). Empirical studies of human
learning demonstrate that groups quickly converge on new
communicative conventions in “decentralized” settings (Gar-
rod & Doherty, 1994; Selten & Warglien, 2007).

Multi-agent reinforcement learning to communicate
(MARLC), however, faces instability challenges if no cen-
tral optimization is introduced (Bernstein et al., 2002; Lau-
rent et al., 2011; Matignon et al., 2012). This influences
the ability of groups consisting of reinforcement learners
to converge on efficient and stable communication systems
which are shared by all their members. Therefore, differ-
ent methods of centralized control and optimization have
been proposed to stabilize MARLC (Sukhbaatar et al., 2016;
Foerster et al., 2016; Lowe et al., 2017; Pesce & Montana,
2020; Foerster et al., 2018). Central optimization makes
the simulations more brittle and less flexibly adaptive, and,
potentially, less promising in developing communication
systems as freely expressive and well-optimized for their
users (Gibson et al., 2019) as natural languages.

We argue that empirical evidence on individual- and
population-level factors that drive decentralized learning
in human groups can guide simulations of language evolu-
tion in MARLC settings. In this work, we explore whether
the social network organization shapes the properties of
communication systems that arise through decentralized
MARLC in simplified settings.

1.1. Human Learning in Different Social Network
Structures

Convergence of human groups on word conventions is dra-
matically affected by the social topology that determines the

Figure 1. Types of social topologies tested in our experiments.
a) Random (Erdos, 1959), b) Fully-connected (clique), c) Small-
world (Newman & Watts, 1999), d) Ring
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Figure 2. The Communication Analysis Metrics with 95% Confidence Intervals for Experiment 1. a) Average rewards b) Between-agent
signal-action mapping divergence c) Signaling divergence (blue) and within-agent signal-action mapping divergence (orange) d) Average
speaking (blue) and listening (orange) consistencies e) Average predictability of agents’ signals (blue) and actions (orange).

possible interactions between participants, as demonstrated
by the naming game experiment (Centola & Baronchelli,
2015). In particular, when arranged in a social network with
many local connections (e.g. “ring” topology (Fig. 1d)) or
a randomly-connected network (Fig. 1a), large groups con-
verge on many local word conventions, reaching no global
consensus. However, if each person is equally likely to
interact with any other person in the group (“clique” (Fig.
1b)), global consensus is easily achieved with no central-
ization. Other studies on decentralized problem solving
in human groups demonstrated that social network organi-
zation shapes the multi-agent optimization process, with
different network types being beneficial for different types
of optimization landscapes. High local connectivity sup-
ports independent local exploration, whereas high global
connectivity helps groups to converge on a shared solution,
choosing among the local ones (Fang et al., 2010; Mason
et al., 2008; Mason & Watts, 2012; Lazer & Friedman, 2007;
Wisdom & Goldstone, 2011).

In this study, we looked at how the type of social network
organization, its average degree, and local connectivity af-
fect the results of communication learning in groups of deep
reinforcement learning agents.

2. Method
2.1. Coordination Game

Every game episode involves two agents, randomly assigned
to speaker and listener roles. The speaker produces a mes-
sage, which is transmitted to the listener. Then, both agents
independently choose an action1. If the actions match, the
agents receive a reward. We add an additional penalty for
overusing any specific action to avoid degenerate solutions
that ignore the communication channel. This setting en-
capsulates the most basic form of a coordination game that
benefits from the formation of communicative conventions.
Please, see supplementary materials for more detail.

2.2. Types of Social Network Organization

Social network determines how the agents are sampled to
play games with one another. For each game round, one
agent is selected randomly, and then its partner is selected
from its neighbors. Thus, an agent can only play a game
with one of its immediate neighbors in the social network.
In all the simulations, the social network size was set to

1Action and signaling sizes were set to 4 in all the simulations.
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10. The networks were undirected, and the self-connections
were not allowed. We tested 4 types of social networks in
our experiments (Fig. 1):
1. Random (ER). Random graph is generated by connect-
ing the nodes with equal probability p (Erdos, 1959).
2. Fully-connected (clique). In clique, all the nodes are
connected to each other.
3. Ring. In the ring network, all the nodes have exactly two
neighbors, and connections form a single continuous path.
4. Small-world. The small-world network is generated by
adding new, “global”, connections to the ring network with
constant probability p (Newman & Watts, 1999).

2.3. Agents

We used simple feed-forward neural networks to represent
the agents. The networks were trained using a vanilla deep
Q-learning algorithm (Mnih et al., 2015) with an added pro-
portion of bottom-up driven “supervising” feedback (see
supplementary materials). We tried to avoid any central-
ized optimization, popular in MARLC settings, to study the
ability of different networks to self-organize conventions.

2.4. Metrics

We used a number of information-theoretic metrics, de-
veloped in Dubova & Moskvichev (2020) and Lowe et al.
(2019) to comprehensively evaluate the communication pro-
tocols: speaker & listener consistency, between- and within-
agent signal-action mapping divergence, signaling diver-
gence, and behavioral predictability (see supp. materials).

3. Results
3.1. Experiment 1: types of social network organization

We simulated multi-agent learning in 4 types of social net-
works: ring (avg degree=2, var=0), random (avg degree=2,
var=1.6, p(connection)=0.2), small-world (avg degree=2.2,
p(add global connection)=0.2), and clique (avg degree=9,
var=0). We also varied the supervision rate (from 0.0 to 0.9
with a step of 0.1). MARLC in each combination of these
two conditions was simulated 10 times to get statistical esti-
mates of the communication metrics. In all the experiments,
each simulation consisted of 120000 game rounds.

The average speaker and listener consistencies were highest
in the ring and small-world networks, and the lowest in the
clique structure. Consistency scores did not vary with the
supervision rate (Fig. 2d). These patterns indicated the
potential dependency of the consistency scores on a single
factor: agent’s degree (the clique had the highest possible
average degree). This hypothesis is tested in Experiment 2.

The agents in random and fully-connected social networks
developed almost perfectly symmetric and homogeneous

Figure 3. Speaker and listener consistency estimates with 95%
Confidence Intervals and the average degree of agents in the ran-
dom social network (Experiment 2)

communication systems according to all three communi-
cation asymmetry metrics (Fig. 2b and 2c). Small-world
and ring social networks lead the populations to develop
asymmetrical and local communication patterns. Moreover,
supervised feedback helped the agents in all topology condi-
tions to develop more shared and symmetric communication
systems. We hypothesized that the effect of network type
on asymmetry scores is driven by local connectivity of the
populations: fully-connected and random networks do not
form local communities, whereas the ring-shaped and small-
world networks in our simulations mainly consisted of local
connections. We tested this hypothesis in Experiment 3.

Lastly, agents in fully-connected and random networks pro-
duced less diversified actions, but their action and signaling
distributions were much more coordinated than in the ring-
shaped and small-world network structures (see Fig. 2). It
suggests that agents in the last two conditions overfitted
to the “action diversity” part of the reward function, while
failing to coordinate using the communication channel.

3.2. Experiment 2: average degree

To test the effect of network’s average degree on speaker
and listener consistencies, we focused on the random (ER)
network, which produces desired variation in the average de-
grees of the nodes, while keeping most of the other network
properties constant. We varied the probability of connecting
nodes in the network from 0.2 to 0.9, and supervision rate
from 0 to 0.9 with a step of 0.1. This resulted in 80 condi-
tions total, each of which was simulated 5 times to obtain
consistency estimates with confidence intervals.

We found that the average degree negatively affected listener
(p < 0.001) and speaker (p < 0.001) consistencies (Fig. 3).
Consistency scores for the average degrees higher than 5.0
stayed similar to the estimate we obtained for the fully-
connected topology in Experiment 1.

3.3. Experiment 3: global and local connections

We examined the effect of locally-connected groups in a
social network on homogeneity and symmetry of the devel-
oped communication systems. For this, we tested MARLC
in the small-world network with different probabilities of
adding a “global” connection to the initial ring-shaped struc-
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ture. We classify a link as “global” if it connects agents
further than one link apart in the ring network. We varied
both the probability of global connection and the supervi-
sion rate from 0 to 0.9 with a step of 0.1. Each combination
of these two factors was simulated 5 times.

Global connection probability was inversely related to the
signaling divergence (p < 0.001), between- (p < 0.001)
and within-agent signal-action mapping divergence (p <
0.001) of the developed communication systems (Fig. 3).
Higher proportion of global connections led the groups to
converge on communication systems that are shared by all
their agents. Supervised feedback also helped the agents
to develop homogeneous and symmetric communication
patterns. The cumulative effect of both high supervision rate
and probability of global connections lead to communication
systems that are shared by all the agents in a group.

Figure 4. The Communication Analysis Metrics with 95% Confi-
dence Intervals for the Experiment 3. a) Between-agent signal-
action mapping divergence b) Signaling divergence (blue), within-
agent signal-action mapping divergence (orange) and the probabil-
ity of global connection in the small-world network

4. Discussion and Conclusion
We conducted three experiments to explore and isolate the
factors of social network organization that drive the effec-
tiveness, homogeneity, and symmetry of communication
systems developed in MARLC settings. Following the sug-
gestions of Lowe et al. (2019), we used a set of information-
theoretic metrics to evaluate our results. This allowed us
to determine which particular properties of communication
systems are affected by our interventions.

The results of our first experiment partially replicated the
effects of social network type on learning word conventions
by human groups (Centola & Baronchelli, 2015). This sug-
gests that the simple domain-general reinforcement learning
model can capture core regularities found in human conver-
gence on linguistic conventions. Our further experiments
provide a more detailed account of particular social net-
work properties that are responsible for these patterns in
communication learning.

The second experiment demonstrated that the average de-
gree of a social network is a central factor affecting how
deterministically agents use the communication channel.
The more communication partners an agent needs to adapt
to, the more variable are its signaling and listening patterns.
Key finding of the third experiment is that the proportion
of global connections is the primary determining factor for
three variables: homogeneity, within- and between-agent
symmetry of the developed communication system. In par-
ticular, high proportion of local social connections led to
the emergence of local communication patterns (“dialects”)
within the population, whereas adding more global connec-
tions forced the agents to find global consensus. Similarly,
high local connectivity resulted in asymmetric communica-
tive patterns, where even the same agent in two different
roles uses completely different vocabularies.

At present, social network effects on MARLC have been
largely under-investigated. To the best of our knowledge,
there is only one work in this direction; L. Graesser and her
colleagues (2019) looked at how communication systems
developed within communities change if one community is
introduced to another, depending on their inter- and intra-
connectivity. Unfortunately, the insights from that work
are only applicable for the specific scenario of community
merging. In our study, we focused on the social network
factors that are applicable to almost any MARLC setting.

The results of our analysis corroborate Lowe et al.’s (2019)
suggestion that overall scores do not reflect whether the
agents use the communication channel to solve the task, and
how efficiently they do so (see Fig. 2). For example, the
performance scores of the agents learning to coordinate in a
ring-shaped social network were the highest among all the
network types. However, more detailed analysis revealed
that agents in this condition developed many local commu-
nication patterns, which varied across agents and their roles.
This, again, illustrates the importance of thorough analysis
of communication protocols learned in MARLC settings.

Our approach has a number of limitations that are important
to mention. Firstly, while we aimed to test a broad spectrum
of social network factors, our experiments are by no means
comprehensive. There are other important aspects of social
network structure that may play a key role in determining
the properties of emerging communication protocols. We
believe that studying the effects of variance of network’s
degree distribution and its modularity on MARLC is es-
pecially promising. Secondly, we used a very simplified
setting of vanilla Q-learning in an “amodal” coordination
game to minimize the number of assumptions that might
make our results less representative to the MARLC prob-
lem in general. We suggest testing these results on more
advanced reinforcement learning models and realistically
perceptually grounded game settings.
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5. Data Availability
The code and data for this work are available online at the
project’s github repository.
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A. Coordination game environment
Each game consists of two-step episodes. Every episode of
the game involves two agents: a speaker and a listener who
need to coordinate their actions.

On the first step, the speaker produces an action and a mes-
sage. On the second step, the listener receives the message
and outputs an action. If the actions match, agents receive
a fixed “coordination” reward Rc. There are four unique
actions and messages that the agents choose from.

In order to avoid trivial solutions when agents converge
on a single action and ignore the communication channel,
we introduced a penalty for repeating an action too often.
Specifically, an additional reward of min(0, 1/4 − p̂A) is
added when an agent chooses action A. Here p̂A denotes
an empirical proportion of selecting action A during the
last H steps. We used a fixed length history H = 100.
Current p̂A are added to the agent’s input state spaces to aid
convergence.

On every episode, each agent can be assigned to play either
the speaker or the listener role. The current role type is
provided as a binary input.

Overall, the agents receive, as inputs:

1. A binary role indicator

2. Random input (for speakers, in order to allow for non-
deterministic policies) or speaker’s message (for listen-
ers)

3. Proportions of different actions in agent’s recent his-
tory

The agents have two output layers both stemming from the
last hidden layer:

1. Action output layer (for neurons, and the action is
determined as argmax)

2. Message output layer which has the same structure as
the action output layer. Message outputs are ignored if
the agents plays the listener role

B. Agents
Agents are implemented using simple feed-forward neural
networks with two hidden layers (hidden sizes of 25 and 15)
and ReLU activation function.

We used vanilla deep Q-learning algorithm with additional
supervised updates to train the agents. Supervised feedback
corresponds to ”peeking” the other agent’s action and stor-
ing it in memory (with the signaling experience from that
game) as a ”correct” response. In this case, the action-signal
mapping is not superimposed, and the ”correct” answers in
the supervising trials are bottom-up driven and reflect the dy-
namics of the agents themselves. Supervised feedback was
implemented by changing a certain proportion of negative
(“miscoordinated”) experiences to the “supervising” ones.
We decided to control for supervision in our experiments
because partial supervising feedback in different forms is of-
ten available in naturalistic language learning situations. By
amplifying the reinforcement signal, supervising feedback
may help to overcome the “sparcity of rewards” problem in
multi-agent reinforcement learning.

C. Metrics
We follow the same set of metrics as used in (Dubova &
Moskvichev, 2020).

1. Speaking Consistency and Listening Consistency.

This metric provides a quantitative measure of whether
the actions that the agents perform are related to the

https://doi.org/10.1007/s10994-019-05864-5
https://doi.org/10.1007/s10994-019-05864-5
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signals that they send or receive. We follow Lowe et al.
(2019) who proposed to use the normalized mutual
information between the distributions over messages
and actions induced by an agent. The metric can be
formally described as follows:

C =
∑
a∈Al

∑
m∈Ac

pa,m(a,m)log
pa,m(a,m)

pa(a)pm(m)
/Z (1)

Here, Z is the average entropy of the two marginal
distributions: Z = (H(pa)+H(pm))

2 . Al and Ac denote
the set of available actions and the set of available
messages respectively.

This metric is computed twice for every agent, con-
ditioned on the role played by the agent (speaker or
listener). We average these metrics across agents in
every simulation to obtain the speaking and listening
consistency metrics that we report.

2. Communication Asymmetry metrics:
a. Between-agent signal-action mapping diver-
gence. While the previous metric aimed to measure
whether an agent is using communication channel (i.e.
whether its actions correspond to the signals in any
way), the second metric aims to measure whether the
communication patterns differ between agents.

We compute the average Jensen-Shannon pairwise di-
vergence between distributions of agents’ actions fol-
lowing a specific signal (averaged over all signals and
pairs of agents).

For a pair of agents, the metric is defined as follows∑
m∈Ac

JSD(pa1|m, pa2|m)/|Ac| (2)

Here, p(a1|m) are action distributions of agent 1 condi-
tional on the message (received or sent) being equal to
m.

b. Within-agent signal-action mapping divergence.

This metric aims to capture internal inconsistencies
in agent’s behaviors when it switches between roles:
whether the agent’s behaviors differ depending on
whether it receive or send a specific message.

For that, we use the average Jensen-Shannon diver-
gence between the distributions over agent’s actions
(conditioned on receiving or sending a specific mes-
sage) when the agent plays the speaker and the listener
role. Formally, we use the same definition as in Equa-
tion 2, but now pa1|m and pa2|m correspond to the
same agent’s distributions when this agent plays dif-
ferent roles (as opposed to distributions of a pair of

different agents playing the same role). We average
the metric scores across all agents to obtain the final
measure that we report.

c. Signaling divergence.

This metric aims to measure the difference in individ-
ual agents’ messaging preferences. We define signal-
ing divergence as an average pairwise Jensen-Shannon
divergence of marginal signaling distributions of dif-
ferent agents.

3. Behavioral Predictability. This last metric is created
to assess the general diversity in agent’s actions. When
the agents’ actions are less diverse (and hence, more
predictable), it is easier to achieve successful multi-
agent coordination without using the communication
channel. To look at whether the diversity of actions
corresponds to the diversity of signals, we also com-
pute the predictability of agents’ signaling patterns.
We define behavioural action/message predictability
as Jensen-Shannon divergence between marginal dis-
tributions of agent’s actions/messages and the uniform
distribution.

Many of these metrics require knowing probability distribu-
tions. We estimate all such distributions empirically.

As a short summary, if we see the learned language as
a simple probabilistic dictionary that maps messages to
actions, the metrics can be summarized as follows (note
that every agent defines two such dictionaries: one for the
speaker and one for the listener role):

1. Speaking Consistency and Listening Consistency.
Are the dictionaries reliable? I.e. if we look up a spe-
cific message, do we consistently get the same action,
or is there a lot of randomness?

2. Communication Asymmetry:
a. Between-agent signal-action mapping diver-
gence. Are the dictionaries similar for different agents?

b. Within-agent signal-action mapping divergence.
How different are the “speaker” and “listener” dictio-
naries that each agent defines?

c. Talking divergence. Do different agents show dif-
ferent patterns in their dictionary lookups?

3. Behavioral Predictability. How uniformly do agents
look up different words in the dictionary (speaking
predictability)? How uniform are the results of their
queries (behavioral predictability)?

D. Statistical analysis
All hypotheses were tested using a linear regression model
with robust covariance estimation, controlling for supervi-
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sion rate. Excluding the supervision rate did not qualita-
tively change the results, however.


